Journal of Organometallic Chemistry, 193 (1980) 359-378 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

A KINETIC STUDY OF THE CLEAVAGE OF THE IRON–CARBON σ BOND IN η^5 -C₅H₅Fe(CO)₂R BY HALOGENATED ACETIC ACIDS

NANCY DE LUCA and ANDREW WOJCICKI*

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received January 3rd, 1980)

Summary

The rates of the reaction of η^{5} -C₃H₃Fe(CO)₂R (R = alkyl and aryl) with CF_3CO_2H to give η^5 -C₅H₅Fe(CO)₂OC(O)CF₃ and RH were investigated in organic solvents, mostly at 25° C, by infrared spectroscopic, manometric and volumetric techniques. When R = alkyl, the cleavage in CH₂Cl₂ is first order in η^5 -C₅H₅Fe- $(CO)_2$ R and first order in the CF₃CO₂H monomer at acid concentrations $\geq 0.1 M$, but first order in η^5 -C₃H₃Fe(CO), R and second order in the CF₃CO₃H monomer at lower acid concentrations. The dependence of the second-order rate constant on R follows the order $C_{0}H_{5} > CH_{3}Si(CH_{3})_{3}$ (>110) > $CH_{3}(32) > n-C_{4}H_{9}(15) > CH_{1}(32) > n-C_{4}H_{9}(15) > 0$ $C_2H_5(11) > CH_2C(CH_3)_3(6.2) > CH_2CH_2C_6H_5(5.3) > CH(CH_3)C_6H_5(\sim 1.2) \gtrsim$ $CH_2C_6H_5$ (1.0) > $CH(CH_3)_2$. The isotope effect, k_H/k_D , for the cleavage of η^{-5} -C₅H₅Fe(CO)₂CH₃ by CF₃CO₂H and CF₃CO₂D is 4.7. Solvent influence on the rate of the Fe–CH₃ bond scission in CH₂Cl₂, CH₂ClCH₂Cl and $C_{4}H_{6}$ is very small. A mechanism is proposed which involves the formation of an $Fe-H-OC(O)CF_3$ hydrogen-bridged 1/1 adduct of the reactants in a reversible step. This adduct then affords $[\eta^5 - C_5H_5Fe(CO)_2(R)H][CF_3CO_2H \cdot O_2CCF_3]$ with the assistance of a second molecule of CF_3CO_2H . Reductive elimination of RH and coordination to iron of $CF_3CO_2^-$ complete the reaction. The corresponding cleavage of a given Fe–R bond by $CHCl_2CO_2H$ is substantially slower than that by CF_3CO_2H ; for the aryl complexes it follows the order $R = p - C_6 H_4 C H_3 > p - C_6 H_4 F > C_6 H_5 >$ p-C₆H₄Cl, with $\rho \sim -5.4$.

Introduction

Studies in this laboratory over the past several years have focused on the mechanism of reactions of η^{5} -C₅H₅Fe(CO)(L)R (L = CO, PR'_3, etc.) and related iron complexes with electrophilic reagents [1-5]. In this general context, the kinetics and stereochemistry at metal of the cleavage of the Fe-C σ bonds by SO₂ [1-4,6] and HgX₂ (X = Cl, Br and I) [4,5,7] have been reported. Stereo-

chemical studies at the α -carbon atom of R of these reactions have also been carried out [8–11].

Acid cleavage of the Fe—C σ bond in η^5 -C₅H₅Fe(CO)(L)R has been investigated with regard to stereochemistry at metal [4,7] and at α carbon [12]. Flood and Miles [7] have shown that the reaction of the optically active η^5 -C₅H₅Fe-(CO)[P(C₆H₅)₃]R (R = CH₃ and C₂H₅) with CF₃CO₂H proceeds with only partial loss of stereochemistry at iron to afford η^5 -C₅H₅Fe(CO)[P(C₆H₅)₃]OC(O)CF₃. A similar study of the cleavage of the diastereomers of $(\eta^5$ -1-CH₃-3-C₆H₅C₅H₃)Fe-(CO)[P(C₆H₅)₃]CH₃ by HI led to the conclusion that the formation of $(\eta^5$ -1-CH₃-3-C₆H₅C₅H₃)Fe(CO)[P(C₆H₅)₃]I occurs with net retention of configuration at iron [4]. Both groups proposed a mechanism involving protonation at the metal before reductive elimination of the alkane. A very recent study of the reaction of η^5 -C₅H₅Fe(CO)₂(*cis* and *trans*-4-C₆H₁₀CH₃) with CF₃CO₂D and DCl demonstrated that the cleavage proceeds with retention of configuration at α carbon [12], consistent with the aforementioned mechanism.

We now report a kinetic study of the scission of the Fe—C σ bond in η^5 -C₅H₅Fe(CO)₂R by protic acids to augment the mechanism proposed solely on stereochemical investigations. The acetic acids CF₃CO₂H and CHCl₂CO₂H were selected for this work because of ease of purification and handling, solubility in organic solvents and the propensity to cleave the Fe—C σ bonds to give stable and characterizable products.

Experimental

General procedures

An atmosphere of dry argon or nitrogen was employed routinely in all preparative and kinetic aspects of this work. Especially air or moisture sensitive solutions were prepared in a drybox. Ventron neutral alumina, deactivated with 6% (by weight) distilled water, was used in chromatographic separations and purifications. Mass spectra (MS) were recorded by Mr. C.R. Weisenberger on an A.E.I. Model MS-9 spectrometer or on a DuPont Instruments 21-490 spectrometer connected to a Perkin-Elmer 990 gas chromatograph. Gas chromatography (GC) was performed on a Varian Associates Aerograph Series 1200 instrument using a 10% SE-30 column. Elemental analyses were done by Galbraith Laboratories, Inc., Knoxville, Tenn.

Physical measurements

Melting points were obtained on a Thomas-Hoover capillary melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on Varian Associates A-60A and EM-360L spectrometers using Me₄Si as an internal reference. Infrared (IR) measurements were made on Perkin-Elmer Model 337 and Beckman IR-9 spectrophotometers using polystyrene film for calibration. The recorded frequencies are accurate to ± 5 and ± 1 cm⁻¹, respectively.

Materials

Trifluoroacetic acid, trifluoroacetic acid- d_1 (b.p. 72°C) and trifluoroacetic anhydride (b.p. 39°C), all from Aldrich, were distilled prior to use. The tetraalkylammonium salts, $[(C_2H_5)_4N]Cl$, $[(C_2H_5)_4N]O_2CCH_3$ and $[(n-C_4H_9)_4N]I$, all from Eastman, were used as received, except $[(C_2H_5)_4N]O_2CCH_3$, which was recrystallized from acetone and isolated as the tetrahydrate.

Tetraethylammonium trifluoroacetate was prepared by the addition of $[(C_2H_5)_4N]Cl$ (1.80 g, 10.8 mmol) in 20 ml of CH₃OH to a solution of AgO₂CCF₃ (2.21 g, 10.9 mmol), also in 20 ml of CH₃OH. The AgCl was filtered off and the filtrate was concentrated to a milky white oil, which was treated with 50 ml of CH₃OH. The resulting solution was dried over CaSO₄ for several days and then filtered. The filtrate was evaporated to dryness to give a quantitative yield of the hygroscopic $[(C_2H_5)_4N]O_2CCF_3$. IR (CH_2Cl_2, cm^{-1}) : 1687vs (ν (C=O)), 1171ms, 1142w, 1094w, 695vs (br); ¹H NMR (CDCl₃, τ): 6.66 (q, J = 7 Hz, CH₂), 8.66 (t, J = 7 Hz, CH₃).

Dichloromethane and 1,2-dichloroethane were first distilled from P_4O_{10} and then from K_2CO_3 , collecting the fractions boiling at 40 and 83°C, respectively. Benzene was distilled at 80°C and stored over molecular sieves (4 Å) or activated neutral alumina. Tetrahydrofuran (THF) was distilled from either LiAlH₄ or Na/K alloy at 65°C. Pentane was distilled from CaH₂ at 36°C. Other solvents were of reagent grade or equivalent quality and were used without further purification.

Iron alkyls, aryls and related complexes

The following alkyl and aryl complexes η^5 -C₅H₅Fe(CO)₂R were prepared by known procedures: R = CH₃ [13], CD₃ [13], C₂H₅ [13], CH₂C(CH₃)₃ [1], CH₂C₆H₅ [14], CH(CH₃)C₆H₅ [15], CH(CH₃)₂ [16], C(CH₃)₃ [17], C₆H₅ [18], *p*-C₆H₄CH₃ [19], *p*-C₆H₄Cl [5] and *p*-C₆H₄F [20]. η^5 -C₅H₅Fe(CO)₂ (n-C₄H₉) was synthesized from Na[η^5 -C₅H₅Fe(CO)₂] and n-C₄H₉Br by using the general method of Piper and Wilkinson [13]. IR (CH₂Cl₂, cm⁻¹): 2001vs, 1941vs (ν (C=O)); ¹H NMR (CDCl₃, τ): 5.36 (s, C₅H₅), 8.55–9.15 (m, C₄H₉). η^5 -C₅H₅Fe(CO)₂CH₂Si(CH₃)₃ and η^5 -C₅H₅Fe(CO)₂CH₂CH₂C₆H₅ were supplied by Dr. L.J. Dizikes.

The trifluoroacetato complex η^5 -C₅H₅Fe(CO)₂OC(O)CF₃ was prepared by the method of King and Kapoor [21]. IR (CH_2Cl_2, cm^{-1}) : 2065vs, 2021vs $(\nu(C=O))$. The corresponding dichloroacetato complex, η^5 -C₅H₅Fe(CO)₂OC-(O)CHCl₂, was obtained from η^5 -C₅H₅Fe(CO)₂C₆H₅ and CHCl₂CO₂H. A stirred solution of η^5 -C₅H₅Fe(CO)₂C₆H₅ (1.0 g, 3.9 mmol) in 20 ml of benzene was treated dropwise with $CHCl_2CO_2H$ (0.33 ml, 3.9 mmol) in 2–3 ml of benzene at 25°C. The resulting solution gradually changed color from yellow-orange to red. After 3 h solvent was removed on a rotary evaporator and the residual red oil was dissolved in 1 ml of benzene and chromatographed on alumina. Elution with 65/35 (v/v) benzene/pentane developed a bright orange-red band which gradually started changing color to the dark red of $[\eta^5-C_5H_5Fe(CO)_2]_2$ on slow movement down the column. The band was eluted off with benzene and the solvent was evaporated to yield a dark red oil. The oil was treated with 5 ml of benzene and the mixture was filtered. To the filtrate was added 20 ml of cyclohexane and the resulting solution was concentrated on a rotary evaporator to afford bright red crystals of η^{5} -C₅H₅Fe(CO)₂OC(O)CHCl₂, which were collected by filtration, m.p. 94°C. Yield 0.68 g (57%). Analysis. Found: C, 35.26; H, 2.01; Cl, 23.39%. C₉H₆Cl₂FeO₄ calcd.: C, 35.45; H, 1.98; Cl, 23.25%. IR (CH₂Cl₂, cm⁻¹): 2065vs, 2017vs (ν (C=O)), 1688 (br) (ν (C=O)); ¹H NMR (CDCl₃, τ): 4.31 (s, CH), 4.94 (s, C_5H_5); MS (m/e): 304 (P⁺, rel. int. 1.5), 276 ((P-CO)⁺, rel. int. 15.8), 248 ((P-2 CO)⁺, rel. int. 24.9), 121 ($C_5H_5Fe^+$, rel. int. 100).

General kinetic procedures

The kinetic studies of the reactions between η^{5} -C₅H₅Fe(CO)₂R and the halogenated acetic acids were carried out in a round-bottom flask fitted with a sidearm for gas inlet-outlet. The neck of the flask was sealed with a serum cap, and the flask was wrapped in aluminum foil for protection from light. A solution under argon of freshly chromatographed η^{5} -C₅H₅Fe(CO)₂R, generally in CH₂Cl₂ (CH₂ClCH₂Cl and C₆H₆ were also used), was prepared in the flask, which was then placed in a constant-temperature bath. After thermal equilibrium had been reached, first a small amount of (CF₃CO)₂O (added only when the acid was CF₃CO₂H; about 10% of the volume of CF₃CO₂H) and then 0.10–1.00 ml of the halogenated acetic acid were injected into the flask with a syringe. The use of metal and Teflon syringe needles led to the same rate results; consequently, both were employed in this study. Following the addition of the acid, the solutions were kept in the thermostated bath (±0.1°C), generally at 25.0°C, with magnetic stirring.

(A) Measurements by infrared spectroscopy. Rates of the reactions were for the most part determined by following the disappearance of the lower frequency CO stretching absorption, $v_{as}(C=O)$, of the iron-alkyl or -aryl complex (at 1964–1932 cm⁻¹ in CH₂Cl₂) or the appearance of the higher frequency CO stretching absorption, $v_s(C=O)$, of the iron-acetato product (at 2065 cm⁻¹ in CH₂Cl₂) on a Beckman Model IR-9 spectrophotometer. Absorbance readings of the appropriate v(C=O) were made on the solution by withdrawing samples with a syringe at various time intervals. Matched infrared cells of various thickness (0.06–2.0 mm) were employed.

All reactions were run under pseudo-first-order conditions, with the concentration of the acid in at least a tenfold excess over that of the iron complex. They were generally followed for three or more half-lives.

Beer's law has previously been shown to hold for the $\nu_{as}(C=O)$ absorption of several η^5 -C₅H₅Fe(CO)₂R complexes in the concentration range 2×10^{-3} to 5×10^{-2} M in THF [5]. It was assumed to be valid for the iron-alkyl, -aryl and -acetato complexes in the solvents used in this study.

(B) Manometric measurements. This technique was used to measure the rate of the formation of CH₄ in the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ by CF₃CO₂H, especially under fast-reaction conditions ($t_{1/2} \leq 3$ min). Either the iron complex or the acid was in at least a tenfold excess over the other reactant. Concentrations of the reactant present in excess were approximately 0.9 M η^5 -C₅H₅Fe-(CO)₂CH₃ and 0.03-0.2 M CF₃CO₂H.

The apparatus consisted of a reaction flask, described above, which was attached by means of a three-way stopcock to a mercury-filled manometer and to another three-way stopcock connected to a source of vacuum and an argon inlet. The entire system, containing a solution of η^{5} -C₅H₅Fe(CO)₂CH₃ with added (CF₃CO)₂O, was thoroughly flushed with argon and evacuated to ca. 550 torr. A sample of CF₃CO₂H was then syringed into the flask and measurements of pressure were taken as often as necessary (intervals ≥ 15 sec). Generally, during the initial 2–3 min of reaction, pressure changes were small owing to the dissolution of methane (solubility = ca. 0.3–0.5 ml of CH₄/ml of solvent for solvents used in this study [22]). The pressure was measured until a constant value, P_{∞} , was obtained (usually within 4–5 h).

(C) Volumetric measurements. Some cleavage reactions of η^5 -C₅H₅Fe(CO)₂CH₃ (ca. $4 \times 10^{-3} M$) with a tenfold excess of CF₃CO₂H were followed by measuring the volume of the liberated CH₄.

The apparatus for these experiments was similar to that described elsewhere [23,24] and incorporated a gas buret with a pressure-equalizing bulb. The buret was connected to a thermostated reaction flask which contained a solution of η^{5} -C₅H₅Fe(CO)₂CH₃ with added (CF₃CO)₂O under argon. The acid was then syringed into the flask and the volume readings were taken as needed until evolution of gas ceased. The amount of gas collected was found to be in good agreement with that calculated for the release of one mole of CH₄ per mole of η^{5} -C₅H₅Fe(CO)₂CH₃.

Treatment of data

From the infrared spectroscopic data pseudo-first-order rate constants, k_{obs} , were obtained by graphing $-\ln(A - A_{\infty})$ vs. time where A is the absorbance of η^{5} -C₅H₅Fe(CO)₂R at any time of the reaction and A_{∞} is the absorbance of the alkyl complex at infinite time. Since all cleavage reactions went to completion, A_{∞} is zero. Alternatively, $-\ln(A'_{\infty} - A')$ vs. time was plotted when the appearance of the iron-acetato product was monitored.

Data from the manometric and volumetric kinetic experiments where the acid was in at least a tenfold excess over η^{5} -C₅H₅Fe(CO)₂CH₃ were treated in a similar fashion. This will be considered further in the Results section.

Results

Stoichiometry and products

Reactions of the alkyl and aryl complexes η^{5} -C₅H₅Fe(CO)₂R with CH_xX_{3-x}CO₂H(X = F, x = 0; X = Cl, x = 1) in CH₂Cl₂, CH₂ClCH₂Cl or C₆H₆ at ambient temperatures proceed according to the equation

$$\eta^{5} - C_{5}H_{5}Fe(CO)_{2}R + CH_{x}X_{3-x}CO_{2}H \rightarrow \eta^{5} - C_{5}H_{5}Fe(CO)_{2}OC(O)CH_{x}X_{3-x} + RH$$
(1)

Infrared spectra in the $\nu(C\equiv O)$ region of the reaction solutions show that, except as indicated below, the iron-acetato complexes are formed cleanly as the only iron carbonyl products. * Quantitative isolation of these complexes was precluded by their decomposition in the course of chromatography on alumina to give $[\eta^5-C_5H_5Fe(CO)_2]_2$. The trifluoroacetato complex, $\eta^5-C_5H_5Fe(CO)_2OC$ -(O)CF₃, was observed also to decompose on prolonged (ca. 24 h) storage in CH₂Cl₂ solution; again the iron dimer was the metal carbonyl product. Identification of the acetato complexes was accomplished either by comparison of the species isolated from the reaction mixture with an authentic sample prepared by the literature procedure (for $\eta^5-C_5H_3Fe(CO)_2OC(O)CF_3$ [21]) or by chemical

 $\mathrm{Mn}(\mathrm{CO})_5\mathrm{C}_6\mathrm{H}_5 + \mathrm{HX} \to \mathrm{Mn}(\mathrm{CO})_5\mathrm{X} + \mathrm{C}_0\mathrm{H}_6$

 $Mn(CO)_5C_6H_5 + HX \rightarrow Mn(CO)_5H + C_6H_5X$

^{*} In contrast, two pathways have been reported [25] for the reaction of Mn(CO)₅C₆H₅ with hydrogen halides (HX):

analysis in conjunction with the infrared, ¹H NMR and mass spectral data (for η^{5} -C₃H₅Fe(CO)₂OC(O)CHCl₂).

In several cleavage reactions the organic product, RH, was identified by various spectroscopic techniques. Thus, the gas liberated in the reaction of η^{5} -C₅H₅Fe-(CO)₂CH₃ with excess CF₃CO₂H in CH₂Cl₂ was characterized by both infrared spectroscopy and mass spectrometry as CH₄; no other hydrocarbon was observed. Similarly, the mass spectrum of the gas collected when η^{5} -C₅H₅Fe-(CO)₂C₂H₅ reacted with CF₃CO₂H in CH₂Cl₂ showed the presence of C₂H₆ as the only product.

Reactions of each of η^5 -C₅H₅Fe(CO)₂CH₂Si(CH₃)₃ and η^5 -C₅H₅Fe(CO)₂C_oH₅ with excess CF₃CO₂H (neat and in CDCl₃, respectively) were examined by ¹H NMR spectroscopy. Both went cleanly to completion as evidenced by the spectra which consisted of the following singlet resonances: τ –1.70 (OH of CF₃CO₂H), 4.88 or 4.95 (C₅H₅ of η^5 -C₅H₅Fe(CO)₂OC(O)CF₃), as well as 10.00 for the former reaction (Si(CH₃)₄) and 2.69 for the latter reaction (C₆H₆). The relative intensities were in accord with the expected 1/1 molar ratio of the two products in each case.

Cleavage by CHCl₂CO₂H (fivefold excess) of each of η^5 -C₅H₅Fe(CO)₂C₆H₄CH₃-*p*, η^5 -C₅H₅Fe(CO)₂C₆H₄F-*p* and η^5 -C₅H₅Fe(CO)₂C₆H₄Cl-*p* in CDCl₃ was also studied by ¹H NMR spectroscopy. In addition to unreacted acid (singlets at τ –1.71 and 3.91: OH and CHCl₂, respectively), the spectra showed η^5 -C₅H₅Fe(CO)₂OC-(O)CHCl₂ (singlets at τ 4.31 and 4.94: CHCl₂ and C₅H₅, respectively) and the appropriate substituted benzene: C₆H₅CH₃ (τ 2.86s and 7.68s), C₆H₅F (τ 2.89m) or C₆H₅Cl (τ 2.74 (br)). Again, the relative intensities confirmed that the products of each reaction formed in a 1/1 ratio.

Three of the investigated complexes exhibited slow and/or more complicated behavior during cleavage. After the reaction of $0.34 M \eta^5 - C_5 H_5 Fe(CO)_2 CH_2 C_6 H_5$ with ca. 2.5 $M CF_3 CO_2 D$ in $CH_2 Cl_2$ had been carried out for 2.3 h, the solvent and other volatile matter were removed under reduced pressure. The collected liquid was shown by GC to consist of $CH_2 Cl_2$, trifluoroacetic acid and toluene. A mass spectrum revealed the presence of both toluene- d_1 and toluene- d_2 . The nonvolatile residue was chromatographed on alumina, yielding unreacted benzyl complex, $\eta^5 - C_5 H_5 Fe(CO)_2 OC(O) CF_3$ and $[\eta^5 - C_5 H_5 Fe(CO)_2]_2$ from decomposition of the trifluoroacetato complex on the column.

Addition of excess (fivefold to tenfold) CF_3CO_2H to a solution of $\eta^5 - C_5H_5Fe-(CO)_2CH(CH_3)_2$ in CH_2Cl_2 produced a pale green color of unknown origin which persisted for ca. 0.5 h. The reaction was monitored by infrared spectroscopy and showed only slight formation of $\eta^5 - C_5H_5Fe(CO)_2OC(O)CF_3$ in 5 h. Extended reaction times (ca. 24 h) led to considerable decomposition, presumably owing to the relative instabilities of $\eta^5 - C_5H_5Fe(CO)_2CH(CH_3)_2$ and $\eta^5 - C_5H_5Fe(CO)_2CH(CH_3)_2$ and $\eta^5 - C_5H_5Fe(CO)_2OC(O)CF_3$ in solution.

The alkyl η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ also displayed what appeared to be a more complicated reaction with CF₃CO₂H. Addition of excess CF₃CO₂H to a CDCl₃ solution of η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ produced a transient green color which turned to a deep red on thorough mixing of the reactants. Only very broad signals were observed in the ¹H NMR spectrum of this solution, presumably owing to the presence of paramagnetic impurities. An examination by infrared spectroscopy of a solution containing η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ and CF₃CO₂H (1.9 *M*, ca. tenfold excess) in CH₂Cl₂ showed, within 4 min of the addition of the acid, ν (C=O) absorptions at 2128, 2075(br), 2025, 1993 and 1932 cm⁻¹. The two strong bands at 1993 and 1932 cm⁻¹ are due to η^5 -C₅H₅Fe(CO)₂C(CH₃)₃, whereas the weaker ones at ca. 2075 and 2025 cm⁻¹ derive from the presence of η^5 -C₅H₅Fe(CO)₂OC(O)CF₃. The absorptions at 2128 and, presumably, ca. 2075 cm⁻¹ are best assigned to an unknown cationic iron dicarbonyl species. The spectrum was monitored for ca. 15 h, during which time the bands at 1993 and 1932 cm⁻¹ decreased in intensity whereas those at 2070 and 2025 cm⁻¹ gained intensity. After 15 h, only a weak absorption at 2128 cm⁻¹ and strong absorptions at 2070 and 2025 cm⁻¹ were discernible. Chromatography of the solution on alumina afforded [η^5 -C₅H₅Fe(CO)₂]₂, from decomposition of η^5 -C₅H₅Fe(CO)₂OC-(O)CF₃ on the column, as the sole iron carbonyl product.

Kinetic determinations

(A) Cleavage by CF_3CO_2H . Kinetic data were obtained by infrared spectroscopy (as well as manometrically and volumetrically when $R = CH_3$) for the reaction in equation 1 (with X = F and x = 0) under pseudo-first-order conditions, with CF_3CO_2H in a tenfold excess over η^5 - $C_5H_5Fe(CO)_2R$, in CH_2Cl_2 at 25°C. The reaction mixtures also contained ($CF_3CO)_2O$, introduced as a precaution against the presence of adventitious H_2O . Control experiments had established that the added anhydride does not affect the rate of the cleavage reaction. Moreover, no reaction was detected between equimolar amounts of η^5 - C_5H_5Fe- ($CO)_2CH_3$ and ($CF_3CO)_2O$ in dry CH_2Cl_2 at 25°C over a period of 4 days.

The kinetic data are consistent with the rate law

$$-\frac{\mathrm{d}[\eta^{5}-\mathrm{C}_{5}\mathrm{H}_{5}\mathrm{Fe}(\mathrm{CO})_{2}\mathrm{R}]}{\mathrm{d}t} = k_{\mathrm{obs}}[\eta^{5}-\mathrm{C}_{5}\mathrm{H}_{5}\mathrm{Fe}(\mathrm{CO})_{2}\mathrm{R}]$$
(2)

Good linear plots of $-\ln(A - A_{\infty})$ vs. time were obtained in all cases, with the slope equal to k_{obs} , where

$$k_{\rm obs} = k_{n+1} [\rm CF_3 \rm CO_2 \rm H]^n \tag{3}$$

A typical plot is shown in Figure 1 for η^5 -C₅H₅Fe(CO)₂CH₃.

The determination of n, the order of the reaction in acid, is complicated by the association of CF₃CO₂H in solution. Studies on solutions of CF₃CO₂H in organic solvents [26] have led to the conclusion that the only important species present are the monomer and cyclic dimer, the association equilibrium being

$$2 \operatorname{CF}_3 \operatorname{CO}_2 \operatorname{H} \rightleftharpoons (\operatorname{CF}_3 \operatorname{CO}_2 \operatorname{H})_2 \tag{4}$$

The dimerization constnat, $K_{\rm D}$, for CF₃CO₂H,

$$K_{\rm D} = \frac{\left[({\rm CF}_{3}{\rm CO}_{2}{\rm H})_{2}\right]}{\left[{\rm CF}_{3}{\rm CO}_{2}{\rm H}\right]_{\rm M}^{2}}$$
(5)

has been determined at 25°C in several solvents [26], including CH₂ClCH₂Cl (1.5 ± 0.4 M^{-1}), C₀H₀ (2.6 ± 0.9 M^{-1}) and CCl₄ (149 ± 19 M^{-1}), but, to the best of our knowledge, not in CH₂Cl₂.

Since CH_2Cl_2 and CH_2ClCH_2Cl have similar solvent properties and comparable dielectric constants ($\epsilon = 8.93$ and 10.36, respectively, at 25°C [27]), we

Fig. 1. A typical plot of infrared spectroscopic data for the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ by a tenfold excess of CF₃CO₂H in CH₂Cl₂ at 25°C.

have taken the dimerization constant for CF_3CO_2H in CH_2Cl_2 at 25°C to be also $1.5 M^{-1}$. By using this value, the initial concentration of the monomer, $[CF_3CO_2H]_M$, was calculated for each kinetic run. Plotting k_{obs} vs. $[CF_3CO_2H]_M$ for the various runs with η^5 -C₅H₅Fe(CO)₂CH₃ affords a straight line at the higher acid concentrations, indicating first-order dependence on the acid monomer in that region. However, the graph begins to slope downward with decreasing $[CF_3CO_2H]_M$ at the lower acid concentrations. An alternative way of graphing these data is based on the logarithmic form of equation 3, i.e.,

 $\ln k_{obs} = \ln k_{n+1} + n \ln [CF_3CQ_2H]_M$

Plotting $\ln k_{obs}$ vs. $\ln[CF_3CO_2H]_M$, as illustrated in Figure 2, shows the slope, *n*, at the higher acid concentrations to be essentially equal to 1. Hence the cleavage reaction is first order in the monomer acid at $[CF_3CO_2H]_a \gtrsim 0.1 M$. * However, at the lower acid concentrations the curve slopes upward, indicating that the order of the reaction with respect to $[CF_3CO_2H]_M$ is greater than 1. The curve approaches, but does not reach, a slope of 2. ** It is further noteworthy that a plot of k_{obs} vs. $[(CF_3CO_2H)_2]$ lacks linearity over the range of the acid concentrations employed.

(6)

^{*} The apparent acid concentration, [CF₃CO₂H]_a, is the sum of [CF₃CO₂H]_M and 1/2[(CF₃CO₂H)₂]. At [CF₃CO₂H]_a = 0.1 *M*, the acid is 80% monomer.

^{**} A referee has expressed concern that the curvature in Figure 2, and therefore our entire argument for the mechanism of the cleavage, rests on uncertain grounds. This is because the value of K_D for CF_3CO_2H is an estimated one, and as such it may well be in error. In order to ascertain how a reasonable error in K_D would affect the plot in Figure 2, we considered CF_3CO_2H to be present exclusively as the monomer. A plot of in k_{OBS} vs. $\ln[CF_3CO_2H]_M$ constructed on this basis exhibits a curvature similar to that in Figure 2. We therefore conclude that even if the K_D employed in our calculations in somewhat in error, the essential mechanistic conclusions remain unaltered *** (although, of course, the rate constants will change somewhat). For a further consideration of this point see Figure 4 and the derivation of the appropriate equations in the text.

^{***} K_{D} would have to be appreciably higher than the assumed value of 1.5 M^{-1} for our conclusions to become invalid. We consider such a situation rather unlikely.

Fig. 2. Cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ by a tenfold excess of CF₃CO₂H in CH₂Cl₂ at 25°C. The data were obtained \circ manometrically, \bullet spectroscopically (infrared) and \Box volumetrically.

The order of the reaction with respect to the acid at the lower concentrations can be elucidated by examination of the manometric data for the cleavage of ca. 0.86 $M \eta^5$ -C₅H₅Fe(CO)₂CH₃ with a tenfold deficiency of CF₃CO₂H. A plot of $-\ln(P_{\infty} - P)$ vs. time is nonlinear; in contrast, graphing $(P_{\infty} - P)^{-1}$ vs. time, as shown in Figure 3, yields a straight line except for the initial few minutes of the reaction. Thus, at these concentrations of CF₃CO₂H, the cleavage is second order in acid and third order overall. The initial deviation from linearity most likely arises from dissolution of CH₄ in CH₂Cl₂ and, possibly, from the higher concentrations of CF₃CO₂H at the start of the reaction.

The reaction of η^{5} -C₅H₅Fe(CO)₂C₂H₅ with CF₃CO₂H shows a kinetic behavior similar to that of the methyl analogue. It is first order in the acid monomer at $[CF_{3}CO_{2}H]_{a} \geq 0.1 M$, and approaches second order at lower $[CF_{3}CO_{2}H]_{a}$.

The cleavage of η^{5} -C₅H₅Fe(CO)₂CH₂Si(CH₃)₃ by CF₃CO₂H occurs very rapidly in CH₂Cl₂ at 25°C, and acid concentrations higher than 0.1 *M* could not be employed. As with the methyl and ethyl complexes at these acid concentrations, a plot of $-\ln k_{obs}$ vs. $\ln[CF_3CO_2H]_M$ is nonlinear. Consequently, only a lower limit for the overall second-order rate constant could be obtained. The corresponding reaction of the other complexes η^{5} -C₅H₅Fe(CO)₂R containing a primary alkyl group, viz. CH₂CH₂C₆H₅ and CH₂C(CH₃)₃, was studied at $[CF_3CO_2H]_a > 0.1 M$ and gave linear plots of $-\ln k_{obs}$ vs. time, with slopes near 1.

The benzyl complex, η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅, undergoes cleavage more slowly than the aforementioned alkyl complexes, and higher acid concentra-

Fig. 3. Plot of manometric data for the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ (0.86 *M*) by a tenfold deficiency of CF₃CO₂H in CH₂Cl₂ at 25°C.

tions, 1.3–2.5 *M*, were necessary to follow the reaction. Possibly because of these higher concentrations, which no doubt alter the nature of the reaction medium, the calculated second-order rate constant, k_2 , increases with increasing $[CF_3CO_2H]_a$. A similar behavior was also observed for η^5 -C₅H₅Fe(CO)₂CH-(CH₃)C₆H₅, which was studied in the acid concentration range 0.99–2.56 *M*. Additionally, the latter complex showed slow decomposition over the relatively long, 1.3–6.0 h reaction times employed. The phenyl complex, η^5 -C₅H₅Fe-(CO)₂C₆H₅, reacts too rapidly to be studied by the techniques used in this investigation.

Kinetic data for the reaction of the various η^5 -C₅H₅Fe(CO)₂R complexes with a tenfold excess of CF₃CO₂H in CH₂Cl₂ at 25°C are presented in Table 1. Second-order rate constants for the cleavage are given in Table 2.

As shown in Table 1, within experimental error, essentially equal rate constants k_{obs} were obtained for the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ and η^5 -C₅H₅Fe(CO)₂CD₃ by excess CF₃CO₂H under comparable concentration conditions in CH₂Cl₂ at 25°C.

The cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ by CF₃CO₂D in CH₂Cl₂ at 25°C was studied in the acid concentration range 0.18–0.51 *M*. The rate constant k_{obs} shows a reasonable linear dependence on [CF₃CO₂D]_M*, yielding $k_2 = 2.96 \times 10^{-3} M^{-1} s^{-1}$ (±15%). Comparison with k_2 for the corresponding cleavage by CF₃CO₂H affords an isotope effect, k_{2H}/k_{2D} of 4.7.

The influence of solvent on the rate of the reaction between η^5 -C₅H₅(CO)₂CH₃ and CF₃CO₂H was examined using CH₂ClCH₂Cl and C₆H₆, in addition to CH₂Cl₂. The data are contained in Table 3. At the acid concentrations employed the

^{*} Calculated by assuming that K_D for CF_3CO_2D is the same as for CF_3CO_2H , i.e., 1.5 M^{-1} .

TABLE 1

R	$[CF_3CO_2H]_a(M)$	k _{obs} (sec ⁻¹)
CH3ª	$1.64 \times 10^{-1} \\ 1.46 \times 10^{-1} \\ 1.29 \times 10^{-1} \\ 1.07 \times 10^{-1}$	1.65×10^{-3} 1.58×10^{-3} 1.38×10^{-3} 1.13×10^{-3}
CD3	$1.52 \times 10^{-1} \\ 1.35 \times 10^{-1} \\ 1.18 \times 10^{-1} \\ 1.06 \times 10^{-1} $	$1.99 \times 10^{-3} \\ 1.54 \times 10^{-3} \\ 1.18 \times 10^{-3} \\ 1.04 \times 10^{-3} \\ 1.04$
C ₂ H ₅	$1.80 \times 10^{-1} \\ 1.42 \times 10^{-1} \\ 1.19 \times 10^{-1} \\ 9.87 \times 10^{-2} \\ 7.97 \times 10^{-2} \\ 6.02 \times 10^{-2} \\ 4.96 \times 10^{-2} \\ 4.16 \times 10^{-2} \\ 10^{-2} $	$6.68 \times 10^{-4} 4.90 \times 10^{-4} 4.47 \times 10^{-4} 3.68 \times 10^{-4} 2.35 \times 10^{-4} 2.18 \times 10^{-4} 1.50 \times 10^{-4} 8.97 \times 10^{-5}$
CH ₂ Si(CH ₃) ₃	9.76 X 10 ⁻² 8.10 X 10 ⁻² 5.93 X 10 ⁻²	3.77×10^{-3} 2.80 × 10 ⁻³ 1.86 × 10 ⁻³
n-C4H9	1.73×10^{-1}	8.18×10^{-4}
$CH_2C(CH_3)_3$	$\begin{array}{c} 2.39 \times 10^{-1} \\ 2.10 \times 10^{-1} \end{array}$	$\begin{array}{c} 4.44 \times 10^{-4} \\ 4.01 \times 10^{-4} \end{array}$
CH ₂ CH ₂ C ₆ H ₅	$\begin{array}{l} 3.94 \times 10^{-1} \\ 3.43 \times 10^{-1} \\ 2.93 \times 10^{-1} \\ 2.50 \times 10^{-1} \\ 2.08 \times 10^{-1} \end{array}$	$6.21 \times 10^{-4} \\ 4.99 \times 10^{-4} \\ 4.59 \times 10^{-4} \\ 3.64 \times 10^{-4} \\ 2.81 \times 10^{-4}$
CH ₂ C ₆ H ₅	2.47 2.37 2.01 1.53 1.31	$\begin{array}{l} 4.05 \times 10^{-4} \\ 3.87 \times 10^{-4} \\ 3.06 \times 10^{-4} \\ 2.04 \times 10^{-4} \\ 1.81 \times 10^{-4} \end{array}$
СН(СН ₃)С ₆ Н ₅	2.56 0.99	5.32 × 10 ⁻⁴ 1.40 × 10 ⁻⁴

KINETIC DATA FOR THE REACTION OF η^5 -C₅H₅Fe(CO)₂R WITH A TENFOLD EXCESS OF CF₃CO₂H IN CH₂Cl₂ AT 25.0°C

^a Additional data are plotted in Figure 2.

cleavage is first order in $[CF_3CO_2H]_M$, calculated from the reported values of K_D in CH_2ClCH_2Cl and C_6H_6 [26] (vide supra), and second order overall. Little variation is seen in k_2 for the three solvents. The above reaction was also examined under synthetic conditions in pentane and in THF at 25°C. The cleavage of $2 \times 10^{-2} M \eta^5$ - $C_5H_5Fe(CO)_2CH_3$ with approximately tenfold acid in pentane was virtually complete in ca. 1 h, but formation of an oil prevented kinetic studies from being conducted. Under comparable conditions of concentration, there was no detectable reaction between η^5 - $C_5H_5Fe(CO)_2CH_3$ (or η^5 - C_5H_5Fe -(CO) $_2CH_2CH_2C_6H_5$) and excess CF_3CO_2H in THF over a period of several hours. This lack of reactivity likely results from an acid—base interaction of CF_3CO_2H with the solvent.

Rate data for the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ by CF₃CO₂H in CH₂Cl₂ at

R	$k_2(M^{-1} \text{ sec}^{-1})$	Rel. k_2	Taft o ^{* a}	ν (C \equiv O) (cm ⁻¹) b
C ₆ H ₅	v. fast ^c	,,	+0.60	1016, 1959
CH ₂ Si(CH ₃) ₃	>4.8 X 10 ⁻²	>110	-0.26	2003, 1944
CH ₃	1.39 X 10 ⁻² d.e	32	0.00	2005, 1944
n-C ₄ H ₉	$6.49 \times 10^{-3} f$	15	0.13	2001, 1941
C ₂ H ₅	4.79 X 10 ⁻³ d,e	11	-0.10	1996, 1941
CH ₂ C(CH ₃) ₃	$2.75 \times 10^{-3} d$	6.2	-0.16	1999, 1938
CH ₂ CH ₂ C ₆ H ₅	$2.32 \times 10^{-3} d$	5.3	+0.08	2000, 1943
CH(CH ₃)C ₆ H ₅	~5.1 × 10 ⁻⁴ g	~1.2	+0.11	1999, 1942
CH ₂ C ₆ H ₅	4.4 $\times 10^{-4}$ h	1.0	+0.22	2004, 1947
CH(CH ₃) ₂	v. slow ⁱ		0.19	1996, 1935

SECOND-ORDER RATE CONSTANTS FOR THE CLEAVAGE OF η^5 -C₅H₅Fe(CO)₂R BY CF₃CO₂H IN CH₂Cl₂ AT 25.0°C

^a From ref. 48. ^b In CH₂Cl₂. ^c $t_{1/2} \sim 2.5$ min when [CF₃CO₂H]_a, in tenfold excess over the complex, is 3.2×10^{-2} M. $d \pm 5\%$. ^e From data on runs with $[CF_3CO_2H]_a \gtrsim 0.1$ M. ^f Based on only one run. ^g $\pm 35\%$. ^h ±20%. ⁱ $t_{1/2} \sim 1$ day when [CF₃CO₂H]_a, in tenfold excess over the complex, is 0.23-0.58 M.

25°C in the presence of added salt are summarized in Table 4. Depending on the ionic substance introduced, very small positive or negative salt effects are noted.

The dependence of k_2 on the temperature was determined for the reaction of η^{5} -C₅H₅Fe(CO)₂CH₃ with CF₃CO₂H in CH₂ClCH₂Cl at 13.9–25.0°C. The data are incorporated into Table 3. In calculating k_2 at 13.9 and 19.5°C it was assumed that the dimerization constant, $K_{\rm D}$, for CF₃CO₂H remains unchanged at 1.5 M^{-1} over the narrow temperature range employed. The activation parameters for the overall second-order reaction are $E_a = 8.1 \pm 1.2$ kcal/mole, $\Delta H^{\neq} = 7.5 \pm 1.2$ kcal/mole and $\Delta S^{\neq} = -41 \pm 2$ eu.

(B) Cleavage by $CHCl_2CO_2H$. Since $CHCl_2CO_2H$ is a weaker acid than CF_3CO_2H

CF₃CO₂H in CH₂ClCH₂Cl AND C₆H₆ $k_2(M^{-1} \text{ sec}^{-1})^a$ Temp. (°C) $[CF_3CO_2H]_a(M)$ kobs(sec-1) Solvent 2.57 × 10⁻³ 1.92 X 10⁻² CH2CICH2CI 25.0 1.85 X 10⁻¹ 1.78×10^{-1} 2.43×10^{-3} 1.70×10^{-1} 2.35 × 10⁻³ 1.55 X 10⁻¹ 1.81×10^{-3} 1.39×10^{-1} 1.60 X 10⁻³ CH2ClCH2Cl 1.94×10^{-1} 2.02 X 10~3 1.41×10^{-2} 19.5 1.82×10^{-1} 1.80×10^{-3} 1.68 X 10⁻¹ 1.78 X 10⁻³ 1.59 X 10⁻¹ 1.59 X 10⁻³ 1.40×10^{-1} 1.22 X 10⁻³ CH2ClCH2Cl 2.86 X 10⁻¹ 1.98 X 10⁻³ 1.14 X 10⁻² 13.9 2.23 X 10⁻¹ 1.75 X 10⁻³ 2.02×10^{-1} 1.71 X 10⁻⁻³ 1.69 X 10⁻¹ 9.66 X 10⁻⁴

RATE DATA FOR THE REACTION OF η^5 -C₅H₅Fe(CO)₂CH, WITH A TENFOLD EXCESS OF

^a Average value, generally calculated by using the data obtained at 3 or 4 highest $[CF_3CO_2H]_a$.

2.26 X 10⁻³

2.16 X 10⁻³

1.58 X 10⁻²

2.47 X 10⁻¹

 2.30×10^{-1}

TABLE 2

TABLE 3

C₆H_o

25.0

TABLE 4

Salt, conc. (M)	······································	$[CF_3CO_2H]_a(M)$	kobs(sec ⁻¹)	$k_{\rm Obs}$ (sec ⁻¹) without added salt ^a
[(C ₂ H ₅) ₄ N]Cl,	9.41 X 10 ⁻³	1.21 × 10 ⁻¹	1.16 × 10 ⁻³	1.29 × 10 ⁻³
	9.39 X 10 ⁻³	1.49×10^{-1}	1.06 X 10 ^{~3}	1.58×10^{-3}
$[(n-C_4H_q)_4N]I^b$	9.74 X 10 ⁻³	1.66 × 10 ⁻¹	1.51 X 10 ⁻³	1.76 × 10 ⁻³
$[(n-C_1H_0)_1N]O_2CCH_3,$	1.16 X 10 ⁻²	1.65 X 10 ⁻¹	1.39 X 10 ⁻³	1.75 × 10 ⁻³
$[(C_{2}H_{5})_{4}N]O_{2}CCF_{3}$	9.41 X 10 ⁻³	1.47×10^{-1}	1.90 X 10 ⁻³	1.55 × 10 ⁻³
	9.50 × 10 ⁻³	1.78×10^{-1}	2.32 × 10 ⁻³	1.89 × 10 ⁻³

RATE DATA FOR THE REACTION OF $\eta^5\text{-}C_5\text{H}_5\text{Fe}(\text{CO})_2\text{CH}_3$ with a tenfold excess of Cf_3CO_2H in the presence of added salt in CH_2Cl_2 at 25.0°C

^a Calculated by using $k_2 = 1.39 \times 10^{-2} M^{-1} \text{ sec}^{-1}$ (Table 2). ^b η^5 -C₅H₅Fe(CO)₂I formed in the reaction.

 $(K_a = 4.3 \times 10^{-2} \text{ and } 5.88 \times 10^{-1} M$, respectively, in H₂O at 25°C [28]), it was used to examine the cleavage of the aryl complexes η^{5} -C₅H₅Fe(CO)₂R, which react too rapidly with CF₃CO₂H to be followed by the techniques employed here. Exploratory kinetic runs revealed that the reaction according to equation 1

TABLE 5

RATE DATA FOR THE REACTION OF THE ARYL COMPLEXES η^5 -C₅H₅Fe(CO)₂R WITH A TENFOLD EXCESS OF CHCl₂CO₂H AT 25.0°C

R	Solvent	$[CHCl_2CO_2H]_a$ (M)	$k_{\rm obs}({\rm sec}^{-1})$
C ₆ H ₅	CH ₂ Cl ₂	1.67×10^{-1} 1.30×10^{-1} 1.01×10^{-1} 8.90×10^{-2} 8.00×10^{-2} 7.92×10^{-2} 6.04×10^{-2} 4.08×10^{-2}	$1.22 \times 10^{-3} \\ 8.50 \times 10^{-4} \\ 7.41 \times 10^{-4} \\ 6.15 \times 10^{-4} \\ 5.73 \times 10^{-4} \\ 4.68 \times 10^{-4} \\ 3.28 \times 10^{-4} \\ 1.87 \times 10^{-4} \\ \end{array}$
C ₆ H₅	CH2ClCH2Cl	$1.67 \times 10^{-1} \\ 1.48 \times 10^{-1} \\ 1.16 \times 10^{-1}$	$1.18 \times 10^{-3} \\ 9.71 \times 10^{-4} \\ 7.03 \times 10^{-4}$
C ₆ H ₅	C ₆ H ₆	1.74×10^{-1} 1.51×10^{-1}	8.38×10^{-4} 5.76 × 10 ⁻⁴
p-C ₆ H ₄ Cl	CH ₂ Cl ₂	$1.82 \times 10^{-1} \\ 1.52 \times 10^{-1} \\ 1.27 \times 10^{-1} \\ 1.02 \times 10^{-1} \\ 7.67 \times 10^{-2} \\ 6.03 \times 10^{-2} $	$\begin{array}{l} 3.51 \times 10^{-4} \\ 2.99 \times 10^{-4} \\ 2.21 \times 10^{-4} \\ 1.88 \times 10^{-4} \\ 1.18 \times 10^{-4} \\ 1.02 \times 10^{-4} \end{array}$
<i>p</i> -C ₆ H₄F	CH ₂ Cl ₂	$1.66 \times 10^{-1} \\ 1.40 \times 10^{-1} \\ 1.23 \times 10^{-1} \\ 9.66 \times 10^{-2} \\ 8.04 \times 10^{-2} \\ 6.07 \times 10^{-2} \\ 4.13 \times 10^{-2} \\ 10^{-$	$1.28 \times 10^{-3} \\ 1.71 \times 10^{-3} \\ 1.49 \times 10^{-3} \\ 9.63 \times 10^{-4} \\ 8.43 \times 10^{-4} \\ 5.58 \times 10^{-4} \\ 3.73 \times 10^{-4} \\ \end{array}$
p-C ₆ H ₄ CH ₃	CH ₂ Cl ₂	$6.90 \times 10^{-2} \\ 5.28 \times 10^{-2} \\ 4.38 \times 10^{-2} \\ 4.34 \times 10^{-2} \\ 3.02 \times 10^{-2} \\ \end{cases}$	3.87×10^{-3} 2.20 × 10 ⁻³ 1.86 × 10 ⁻³ 1.53 × 10 ⁻³ 9.77 × 10 ⁻⁴

of a given η^{5} -C₃H₃Fe(CO)₂R is indeed much slower with CHCl₂CO₂H than with CF₃CO₂H. Thus, with 0.16 *M* acid in a tenfold excess over η^{5} -C₃H₅Fe(CO)₂CH₃ in CH₂Cl₂ at 25°C, the cleavage by CHCl₂CO₂H has a $t_{1/2}$ of ca. 24 h whereas that by CF₃CO₂H is 50% complete in ca. 7 min. Similarly, under the above conditions with 3.2×10^{-2} *M* acid, the reactions of η^{5} -C₅H₃Fe(CO)₂C₀H₅ with CHCl₂CO₂H and CF₃CO₂H have half-lives of 16 and <2.5 min, respectively.

Rate data obtained by infrared spectroscopy for the cleavage of the aryl complexes by excess CHCl₂CO₂H are presented in Table 5. Good linear plots resulted on graphing $-\ln(A - A_{\infty})$ vs. time, showing that the reaction is first order in η^{5} -C₅H₅Fe(CO)₂R. Unfortunately, the dimerization constant, $K_{\rm D}$, for CHCl₂CO₂H is known only in C₀H₀ ($K_{\rm D} = 27.1 \pm 1.9 \ M^{-1}$ at 25°C [29]) of the three solvents employed in this work. Thus it was not possible to determine [CHCl₂CO₂H]_M and the order of the reaction in acid.

This notwithstanding, inspection of the data in Table 5 reveals that the observed rate constant, k_{obs} , in equation 2 increases as the σ^* value [30] for the para substituent on the phenyl ring (enclosed in parentheses) becomes more negative, i.e., $p-C_oH_4Cl(0.11) < C_oH_5(0.00) < p-C_oH_4F(-0.07) < p-C_oH_4CH_3(-0.31)$. This order is typical of electrophilic substitution and cleavage reactions. Although ρ cannot be calculated as accurately as desirable from these data, it appears to be approximately -5.4.

The cleavage of η^5 -C₅H₅Fe(CO)₂C₆H₅ by CHCl₂CO₂H at 25°C was also studied in CH₂ClCH₂Cl and C₆H₆. The appropriate rate data are given in Table 5. A comparison of the values of k_{obs} obtained at comparable concentrations of the acid reveals that the reaction is somewhat faster in CH₂Cl₂ and CH₂ClCH₂Cl than in C₆H₆.

Discussion

The observed first- and second-order dependence of the reaction of η^{5} -C₅H₅Fe-(CO)₂CH₃ with CF₃CO₂H on the monomer acid concentration, at high ($\geq 0.1 M$) and low [CF₃CO₂H]_a, respectively, may be explained by the scheme in equation 7.

$$\eta^{5} \cdot C_{5}H_{5}Fe(CO)_{2}CH_{3} + CF_{3}CO_{2}H \stackrel{k}{\underset{k'}{\leftarrow}} \eta^{5} \cdot C_{5}H_{5}Fe(CO)_{2}CH_{3} \cdot CF_{3}CO_{2}H$$
$$\eta^{5} \cdot C_{5}H_{5}Fe(CO)_{2}OC(O)CF_{3} + CH_{4} + CF_{3}CO_{2}H$$
(7)

By assuming a steady-state concentration of the adduct η^{5} -C₅H₅Fe(CO)₂CH₃ · CF₃CO₂H, the rate expression in equation 8 is derived.

$$-\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}]}{dt} = \frac{kk''[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}][CF_{3}CO_{2}H]_{M}^{2}}{k'+k''[CF_{3}CO_{2}H]_{M}}$$
(8)

An examination of this rate law at the extremes of the acid concentration leads to the following limiting rate expressions. At high $[CF_3CO_2H]_M$,

k''[CF₃CO₂H]_M >> k', and hence

$$-\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}]}{dt} = k[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}][CF_{3}CO_{2}H]_{M}$$
(9)

At low
$$[CF_{3}CO_{2}H]_{M}$$
, $k' >> k'' [CF_{3}CO_{2}H]_{M}$, leading to

$$-\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}]}{dt} = \frac{kk''}{k'} [\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}][CF_{3}CO_{2}H]_{M}^{2}$$
(10)

A crucial test of the validity of the mechanism in equation 7 is based on a graphical representation of the equation

$$k_{\rm obs} = \frac{kk'' [CF_3 CO_2 H]_{\rm M}^2}{k' + k'' [CF_3 CO_2 H]_{\rm M}}$$
(11)

which combines equations 2 ($R = CH_3$) and 8. This equation may also be written in the form

$$\frac{[CF_{3}CO_{2}H]_{M}}{k_{obs}} = \frac{1}{k} + \frac{k'}{kk''[CF_{3}CO_{2}H]_{M}}$$
(12)
Hence a plot of
$$\frac{[CF_{3}CO_{2}H]_{M}}{k_{obs}} vs. \frac{1}{[CF_{3}CO_{2}H]_{M}} should yield a straight line$$

whose slope and intercept are equal to k'/kk'' and 1/k, respectively.

Figure 4 shows such a plot. The value of k derived therefrom is 1.9×10^{-2} $M^{-1} \sec^{-1}$, and may be compared with a rate constant of $1.39 \times 10^{-2} M^{-1} \sec^{-1}$ obtained from the plot in Figure 2 (Table 2). The agreement is fair if one takes into account some scatter of the data points in Figures 2 and 4. By using $k = 1.9 \times 10^{-2} M^{-1} \sec^{-1}$ in conjunction with the slope of the line in Figure 4, the ratio k'/k'' comes out to be $4.9 \times 10^{-2} M$.

A sequence of reactions similar to that in equation 7 may be invoked to account for the observed kinetic behavior toward CF_3CO_2H of the complexes η^5 -C₅H₅Fe(CO)₂C₂H₅ and η^5 -C₅H₅Fe(CO)₂CH₂Si(CH₃)₃, studied in less detail than the methyl analogue. The cleavage of the other alkyl complexes was examined only at the higher acid concentrations ($\geq 0.1 M$) and accordingly exhibited first-order dependence on $[CF_3CO_2H]_M$. In the absence of any evidence to the contrary, we assume that the alkyl complexes η^5 -C₅H₅Fe(CO)₂R react uniformly as shown in equation 7 for η^5 -C₅H₅Fe(CO)₂CH₃.

The second-order rate constants, k_2 , listed in Table 2 for the cleavage of the various alkyl complexes η^5 -C₅H₅Fe(CO)₂R, are also those designated as k in equation 9. They refer to the bimolecular interaction between η^5 -C₅H₅Fe(CO)₂R and CF₃CO₂H given as part of equation 7.

These data show that the reactivity of CF_3CO_2H toward $\eta^5 \cdot C_5H_5Fe(CO)_2R$ follows the order $R = C_0H_5 > CH_2Si(CH_3)_3$ (>110) > CH_3 (32) > $n-C_4H_9$ (15) > C_2H_5 (11) > $CH_2C(CH_3)_3$ (6.2) > $CH_2CH_2C_6H_5$ (5.3) > $CH(CH_3)C_5H_5$ (~1.2) $\gtrsim CH_2C_6H_5$ (1.0) > $CH(CH_3)_2$, the relative values of the rate constant being enclosed in parentheses. In general, when R is an alkyl group, the range of the relative reactivity is not wide. Moreover, both electronic factors, e.g., $R = CH_2Si-(CH_3)_3 > CH_3$ or $CH_2C(CH_3)_3$, and steric factors, e.g., $CH_3 > CH(CH_3)_2$ or $CH_2C-(CH_3)_3$, as well as *trans*-4- $C_6H_{10}CH_3 > cis$ -4- $C_6H_{10}CH_3$, obtained by Rogers and

Fig. 4. Cleavage of η^{5} -C₅H₅Fe(CO)₂CH₃ by a tenfold excess of CF₃CO₂H in CH₂Cl₂ at 25° C. The data are those used in Figure 2.

Baird [12], appear to influence the propensity of η^5 -C₅H₅Fe(CO)₂R to undergo cleavage. Except when R = C₆H₅, the foregoing pattern parallels the order of reactivity toward η^5 -C₅H₅Fe(CO)₂R of HgCl₂, where direct interaction between iron and mercury has been proposed [5]. However, it differs noticeably from the rate profile for the reaction of η^5 -C₅H₅Fe(CO)₂R with SO₂, which is thought to involve backside interaction of SO₂ with R [1,2]. Thus it would appear that the acid cleavage of the alkyl complexes proceeds by an electrophilic attack of CF₃CO₂H at the metal.

Central to any discussion of mechanistic details of the cleavage process in equation 7 (for R = alkyl in general) is the nature of the proposed 1/1 adduct. A reasonable structure of this intermediate, I, along with a sequence of steps thought to comprise the scission reaction, is depicted in Scheme 1.

Intermediate I may be regarded as a low-concentration species in which hydrogen has not been transferred completely from the acid to the metal, but instead bridges the two moieties. Stable hydrogen-bridged structures are known in organo-transition metal chemistry, and include those with metal—hydrogen silicon bonds [31] and metal—hydrogen—metal bonds in general [32]. Moreover, such structures are amply precedented in the behavior of carboxylic acids toward bases [33]. For example, carboxylic acids readily hydrogen-bond to the amines with varying degrees of proton transfer depending on the strength of the acid and the base [34,35]. An alternative structural assignment to the initial 1/1 adduct, that of a tight ion pair similar to III in Scheme 1, seems unlikely. This is because the rate of the cleavage reaction of the methyl complex is virtually unaffected by the nature of the solvent, and changes little on addition of a salt. Unless the presence of ca. $0.2 M \text{ CF}_3\text{CO}_2\text{H}$ exerts a leveling effect on the reaction medium for CH_2Cl_2 , $\text{CH}_2\text{ClCH}_2\text{Cl}$ and C_0H_6 , these results would SCHEME 1

seem to rule out any substantial increase in the separation of charge during the formation of the intermediate η^{5} -C₅H₅Fe(CO)₂R · CF₃CO₂H (*k*-step, equation 7). The observed isotope effect, $k_{\rm H}/k_{\rm D} = 4.7$, for the cleavage of η^{5} -C₅H₅Fe-(CO)₂CH₃ with CF₃CO₂H and CF₃CO₂D indicates a considerable degree of bond breaking of the O—H and O—D in the transition state for the first step of the cleavage, and appears to be in accord with the proposed structure of I. Likewise, the large negative value of ΔS^{\neq} and the relatively small value of ΔH^{\neq} are consistent with the suggested bimolecular interaction between η^{5} -C₅H₅Fe(CO)₂R and CF₃CO₂H.

The role of a second molecule of CF_3CO_2H in the cleavage is not fully understood. However, a reasonable postulate would be that this molecule assists in the dissociation of the hydrogen bridge in I to furnish III by stabilizing the incipient acetate anion through hydrogen-bonding as shown in II. Carboxylic acids commonly engage in hydrogen-bonding with polar substances, including $CHCl_3$ and CH_2Cl_2 [33]. Since it is not possible to determine the value of k'' (equation 7) for the different alkyl complexes from the data on hand, little else can be said about this step of the reaction. It may be added, however, that secondorder dependence on the concentration of the organic reactant has been observed for the amines interacting with cationic manganese and rhenium carbonyls [36], (methoxycarbene)pentacarbonylchromium [37] or organic esters [38]. As in this study, it has been ascribed to hydrogen-bonding. Completing the cleavage in Scheme 1 is reductive elimination of RH from III followed by coordination of the acetate anion to iron to afford the isolable product, η^5 - C_5H_5Fe- (CO)₂OC(O)CF₃.

An attempt was made at detection of species III when investigating the complex with $R = C(CH_3)_3$. It was thought that this tertiary alkyl group would not readily engage in reductive elimination with hydrogen to give $CH(CH_3)_3$, thus conferring some stability on III. Although the infrared spectrum of a solution containing η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ and CF₃CO₂H showed two ν (C=O) bands in the region expected for a cationic η^5 -C₅H₅Fe(CO)₂(R)H⁺, further efforts at characterization of this species proved unsuccessful. The reaction of η^5 -C₅H₅Fe(CO)₂CH₂C₂H₅ with CF₃CO₂D according to equation 1 is accompanied by the deuteriation of the phenyl ring. The latter process, which proceeds more rapidly than the cleavage, has been reported independently by Setkina [39,40] for both η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅ and η^5 -C₅H₅Fe(CO)₂CH-(CH₃)C₆H₅. Since the mechanism of the deuterium exchange and the cleavage in the system η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅—CF₃CO₂D is presently under examination by Johnson [41], no detailed investigation was conducted in this laboratory.

The mechanism in Scheme 1 is in full accord with the recently reported stereochemical outcome at iron and at α carbon for the acid cleavage of the optically active η^{5} -C₅H₅Fe(CO)[P(C_oH₅)₃]R (R = CH₃ and C₂H₅) [7] and of η^{5} -C₅H₅Fe(CO)₂(*cis*- and *trans*-4-C_oH₁₀CH₃) [12], respectively. In the first study, partial racemization of unreacted η^{5} -C₅H₅Fe(CO)[P(C_oH₅)₃]R may result from a fluxional behavior of an intermediate analogous to I (or III or both). The depicted pathway would also allow for the observed partial loss of stereochemistry at metal in the formation of η^{5} -C₅H₅Fe(CO)[P(C_oH₅)₃]OC(O)CF₃. In the second study, retention of configuration at the α -carbon atom of 4-C₆H₁₀CH₃ may be rationalized by reductive coupling of the cycloalkyl group and deuterium (from CF₃CO₂D) to eliminate 4-C₆H₁₀DCH₃.

Mechanisms involving protonation at the metal center have been proposed for the cleavage of transition metal—carbon σ bonds by HCl in coordinatively unsaturated square-planar platinum(II) alkyls and aryls [42—44] and in dialkylaurates(I) [45]. Although protonation of the metal is a common behavior of low-valent coordinatively saturated transition metal complexes [32,46], such a pathway for the scission of metal—alkyl bonds had not been fully documented prior to the present mechanistic study.

By way of contrast, the aryl complexes η^{5} -C₅H₅Fe(CO)₂R appear to react with acetic acids via a mechanism different from that proposed for the alkyl complexes based on the following observations. First, as shown in Table 2, the cleavage of η^{5} -C₅H₅Fe(CO)₂C₀H₅ by CF₃CO₂H is much faster than that of any alkyl complex investigated here. Moreover, the order η^{5} -C₅H₅Fe(CO)₂C₆H₅ > η^{5} -C₅H₅Fe(CO)₂CH₃ holds for the reaction with CHCl₂CO₂H. The reactivity pattern, R = aryl > alkyl, was previously noted for the acid cleavage of HgR₂ [47] and has been ascribed to proton attack at the α carbon of the phenyl ring. Second, the approximate ρ value of -5.4 for the scission of the aryls η^{5} -C₅H₅Fe₅(CO)₂R by CHCl₂CO₂H indicates a considerable sensitivity of the reaction to substituent effects. It may be compared with $\rho = -4.3$ and -1.2 for the SO₂

insertion [1] and the HgCl₂ cleavage [5], respectively, of the same η^5 -C₅H₅Fe-(CO)₂R aryl complexes. These reactions were proposed to proceed by electrophilic attack of SO₂ at the phenyl ring and of HgCl₂ at the metal. A comparison of the three ρ values would seem to suggest that the acetic acids interact with the α -carbon atom as shown in IV. Unfortunately, further details of the mechanism could not be elucidated because of lack of data on the nature of CHCl₂CO₂H in the chlorinated hydrocarbons used in this work.

Acknowledgement

We gratefully acknowledge support of this investigation by the National Science Foundation through Grant CHE-7911882 to A.W.

References

- 1 S.E. Jacobson and A. Wojcicki, J. Amer. Chem. Soc., 95 (1973) 6962.
- 2 S.E. Jacobson and A. Wojcicki, Inorg. Chim. Acta, 10 (1974) 229.
- 3 P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 13 (1974) 2457.
- 4 T.G. Attig, R.G. Teller, S.-M. Wu, R. Bau and A. Wojcicki, J. Amer. Chem. Soc., 101 (1979) 619.
- 5 L.J. Dizikes and A. Wojcicki, J. Amer. Chem. Soc., 99 (1977) 5295.
- 6 S.L. Miles, D.L. Miles, R. Bau and T.C. Flood, J. Amer. Chem. Soc., 100 (1978) 7278.
- 7 T.C. Flood and D.L. Miles, J. Organometal. Chem., 127 (1977) 33.
- 8 P.L. Bock, D.J. Boschetto, J.R. Rasmussen, J.P. Demers and G.M. Whitesides, J. Amer. Chem. Soc., 96 (1974) 2814.
- 9 D. Dong, D.A. Slack and M.C. Baird, J. Organometal. Chem., 153 (1978) 219.
- 10 K. Stanley and M.C. Baird, J. Amer. Chem. Soc., 99 (1977) 1808.
- 11 D. Dong, D.A. Slack and M.C. Baird, Inorg. Chem., 18 (1979) 188.
- 12 W.N. Rogers and M.C. Baird, J. Organometal. Chem., 182 (1979) C65.
- 13 T.S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104.
- 14 J.P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 88 (1966) 4862.
- 15 J.J. Alexander and A. Wojcicki, Inorg. Chim. Acta, 5 (1971) 655.
- 16 M.L.H. Green and P.L.I. Nagy, J. Organometal. Chem., 1 (1963) 58.
- 17 W.P. Giering and M. Rosenblum, J. Organometal. Chem., 25 (1970) C71.
- 18 R.B. King and M.B. Bisnette, J. Organometal. Chem., 2 (1964) 15.
- 19 S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 12 (1973) 717.
- 20 R.P. Stewart and P.M. Treichel, J. Amer. Chem. Soc., 92 (1970) 2710.
- 21 R.B. King and R.N. Kapoor, J. Organometal. Chem., 15 (1968) 457.
- 22 A. Seidell, Solubilities of Organic Compounds, Vol. II, Van Nostrand, New York, 1941, pp. 38-41.
- 23 F. Calderazzo and F.A. Cotton, Inorg. Chem., 1 (1962) 30.
- 24 R.F. Heck, J. Amer. Chem. Soc., 85 (1963) 651.
- 25 A.A. Ioganson, quoted (ref. 16) in A.N. Nesmeyanov, L.G. Makarova, N.A. Ustynyuk, B.A. Kvasov and L.V. Bogatyreva, J. Organometal. Chem., 34 (1972) 185.
- 26 S.D. Christian and T.L. Stevens, J. Phys. Chem., 76 (1972) 2039.
- 27 J.A. Riddick and W.B. Bunger, Organic Solvents, 3rd ed., Wiley-Interscience, New York, 1970, pp. 349 and 356.
- 28 G. Kortum, W. Vogel and K. Andrussow, Dissociation Constants of Organic Acids in Aqueous Solution, Butterworths, London, 1961.
- 29 J. Steigman and W. Cronkright, Spectrochim. Acta A, 26 (1970) 1805.
- 30 C.D. Ritchie and W.F. Sager, Progr. Phys. Org. Chem., 2 (1964) 323.
- 31 M. Elder, Inorg. Chem., 9 (1970) 762.
- 32 H.D. Kaesz and R.B. Saillant, Chem. Rev., 72 (1972) 231.
- 33 M.M. Davis, Acid-Base Behavior in Aprotic Organic Solvents, U.S. National Bureau of Standards monograph 105.
- 34 D.B. Cook, Ph.D. Thesis, University of California, Davis, 1965; Dissertation Abstr., 26 (1966) 4260.
- 35 G.M. Barrow, J. Amer. Chem. Soc., 78 (1956) 5802.
- 36 R.J. Angelici and R.W. Brink, Inorg. Chem., 12 (1973) 1067.
- 37 H. Werner, E.O. Fischer, B. Heckl and C.G. Kreiter, J. Organometal. Chem., 28 (1971) 367.
- 38 F.M. Menger and J.H. Smith, J. Amer. Chem. Soc., 94 (1972) 3824.

- 39 V.N. Setkina, T. Yu. Orlova and D.N. Kursanov, Abstracts, VIIIth International Conference on Organometallic Chemistry, Kyoto, Japan, September 1977, p. 132 (paper 2B 09).
- 40 T.Yu. Orlova, V.N. Setkina and D.N. Kursanov, J. Organometal. Chem., 136 (1977) 371.
- 41 M.D. Johnson, personal communication.
- 42 U. Belluco, M. Giustiniani and M. Graziani, J. Amer. Chem. Soc., 89 (1967) 6494.
- 43 U. Belluco, U. Croatto, P. Uguagliati and R. Pietropaolo, Inorg. Chem., 6 (1967) 718.
- 44 R. Romeo, D. Minniti, S. Lanza, P. Uguagliati and U. Belluco, Inorg. Chim. Acta, 19 (1976) L55.
- 45 A. Tamaki and J.K. Kochi, J. Chem. Soc., Dalton Trans., (1973) 2620.

-

- 46 T.C. Flood, E. Rosenberg and A. Sarhangi, J. Amer. Chem. Soc., 99 (1977) 4334, and references therein.
- 47 F.R. Jensen and B. Rickborn, Electrophilic Substitution of Organomercurials, McGraw-Hill, New York, 1968, Chapt. 3.
- 48 R.W. Taft, Jr. in M.S. Newman (Ed.), Steric Effects in Organic Chemistry, Wiley, New York, 1956, chap. 13.